

VIDYA BHAWAN, BALIKA VIDYAPEETH,

Shakti Utthan Ashram, Lakhisarai-811311(Bihar)

Affiliated to CBSE up to +2 Level

Class: 9th

Subject: Mathematics

Date: 18/01/2022

Surface Areas and Volumes

Ex 13.2 Q1. The curved surface area of a right circular cylinder of height 14 cm is 88 cm². Find the diameter of the base of the cylinder. Solution: Let r be the radius of the cylinder. Here, height (h) = 14 cm and curved surface area = 88 cm^2 Curved surface area of a cylinder = 2π rh $\Rightarrow 2\pi rh = 88$ \Rightarrow 2 x 227 x r x 14 = 88 \Rightarrow r = 88×72×22×14 = 1 cm \therefore Diameter = 2 x r = (2 x 1) cm = 2 cm Q2. It is required to make a closed cylindrical tank of height 1 m and base diameter 140 cm from a metal sheet. How many square metres of the sheet are required for the same? Solution: Here, height (h) = 1 mDiameter of the base = 140 cm = 1.40 mRadius (r) = 1.402m = 0.70 mTotal surface area of the cylinder = $2\pi r (h + r)$ $= 2 \times 227 \times 0.70(1 + 0.70) \text{ m}^2$ $= 2 \times 22 \times 0.10 \times 1.70 \text{ m}^2$ = 2 x 22 x 10100 x 170100m² $= 748100m^2 = 7.48 m^2$ Hence, the required sheet = 7.48 m^2 Q3.A metal pipe is 77 cm long. The inner ft diameter of a cross section is 4 cm, the outer diameter being 4.4 cm (see figure). Find its (i) inner curved surface area. (ii) outer curved surface area. (iii) total surface area. Solution: Length of the metal pipe = 77 cmIt is in the form of a cylinder. \therefore Height of the cylinder (h) = 77 cm Inner diameter = 4 cm Inner radius (r) = 42 cm = 2 cmOuter diameter = 4.4 cm \Rightarrow Outer radius (R) = 4.42 cm = 2.2 cm (i) Inner curved surface area = $2\pi rh$ $= 2 \times 227 \times 2 \times 77 \text{ cm}^2$

 $= 2 \times 22 \times 2 \times 11 \text{ cm}^2 = 968 \text{ cm}^2$

(ii) (ii) Outer curved surface area = $2\pi Rh$ = $2 \times \frac{22}{7} \times 2.2 \times 77 \text{ cm}^2$ = $\frac{2 \times 22 \times 22 \times 11}{10} \text{ cm}^2 = \frac{10648}{10} \text{ cm}^2$ = 1064.8 cm^2

(iii)Total surface area =

[Inner curved surface area] + [Outer curved surface area] + [Area of two circular ends] = $[2\pi rh] + [2\pi Rh] + 2[\pi (R^2 - r^2)]$

$$= [968 \text{ cm}^2] + [1064.8 \text{ cm}^2]$$

= [968 cm²] + [1064.8 cm²]
+ 2 × $\frac{22}{7}$ (2.2²-2²) cm²
= 968 cm² + 1064.8 cm² + $\frac{2 \times 22}{7}$ (4.84 - 4) cm²
= 2032.8 cm² + $\frac{2 \times 22 \times 0.84}{7}$ cm²
= 2032.8 cm² + 5.28 cm²
= 2038.08 cm²

Q4. The diameter of a roller is 84 cm and its length is 120 cm. It takes 500 complete revolutions to move once over to level a playground. Find the area of the playground in m². Solution: The roller is in the form of a cylinder of diameter = 84 cm

 \Rightarrow Radius of the roller(r) = 842 cm = 42 cm

Length of the roller (h) = 120 cm

Curved surface area of the roller = $2\pi rh$

= 2 x 227 x 42 x 120 cm²

= 2 x 22 x 6 x 120 cm² = 31680 cm²

Now, area of the playground levelled in one revolution of the roller = 31680 cm^2

= 3168010000m²

 \therefore Area of the playground levelled in 500

revolutions = 500 x 3168010000m² = 1584m²

Q5. A cylindrical pillar is 50 cm in diameter and 3.5 m in height. Find the cost of painting the curved surface of the pillar at the rate of 12.50 per m².

Solution: Diameter of the pillar = 50 cm

: Radius (r) = 502m = 25m = 14m

and height (h) = 3.5m

Curved surface area of a pillar = $2\pi rh$

$$= 2 \times \frac{22}{7} \times \frac{1}{4} \times 3.50 \text{ m}^2$$
$$= \frac{44 \times 350}{7 \times 4 \times 100} \text{ m}^2 = \frac{11}{2} \text{ m}^2$$

 \therefore Curved surface area to be painted = $112m^2$

 \therefore Cost of painting of 1 m² pillar = Rs. 12.50

 \div Cost of painting of 112 m² pillar= Rs. (112 x 12.50)

= Rs. 68.75.